
Strategies for Processing ad hoc Queries on Large Data
Warehouses∗

Kurt Stockinger
CERN

Geneva, Switzerland

Kurt.Stockinger@cern.ch

Kesheng Wu
Lawrence Berkeley Nat’l Lab

Berkeley, CA, USA

KWu@lbl.gov

Arie Shoshani
Lawrence Berkeley Nat’l Lab

Berkeley, CA, USA

Shoshani@lbl.gov

ABSTRACT
As data warehousing applications grow in size, existing data
organizations and access strategies, such as relational tables
and B-tree indexes, are becoming increasingly ineffective.
The two primary reasons for this are that these datasets
involve many attributes and the queries on the data usu-
ally involve conditions on small subsets of the attributes.
Two strategies are known to address these difficulties well,
namely vertical partitioning and bitmap indexes. In this pa-
per, we summarize our experience of implementing a number
of bitmap index schemes on vertically partitioned data ta-
bles. One important observation is that simply scanning the
vertically partitioned data tables is often more efficient than
using B-tree based indexes to answer ad hoc range queries on
static datasets. For these range queries, compressed bitmap
indexes are in most cases more efficient than scanning ver-
tically partitioned tables. We evaluate the performance of
two different compression schemes for bitmap indexes stored
is various ways. Using the compression scheme called Word-
Aligned Hybrid Code (WAH) to store the bitmaps in plain
files shows the best overall performance for bitmap indexes.
Tests indicate that our bitmap index strategy based on WAH
is not only efficient for attributes of low cardinality, say,
< 100, but also for high-cardinality attributes with 200,000
or more distinct values.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database managementSys-
tem[Query processing]; H.2.2 [Information Systems]: Database
managementSystem[Access methods]

∗This work was supported by the Director, Office of Science,
Office of Laboratory Policy and Infrastructure Management,
of the U.S. Department of Energy under Contract No. DE-
AC03-76SF00098.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DOLAP’02, November 4–9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-492-4/02/0011 ...$5.00.

General Terms
Algorithms, Performance

1. INTRODUCTION
Many large scale science projects are generating or plan-

ning to generate terabytes of data per year. For example,
a high-energy physics project called STAR is currently on-
line and is capable of generating a terabyte a year1. Emerg-
ing scientific applications such as the Large Hadron Collider
(LHC)2 at CERN and the NASA EOS3 satellites are capa-
ble of producing data even faster. In the commercial world,
similar amounts of data are being gathered. On-line analyt-
ical processing (OLAP) on these datasets presents a great
challenge to most software systems built around them.

Currently, the predominant model of data processing is
to store data as tables in relational database management
systems (DBMS) and use a variant of the B-tree index [8]
to facilitate the searching operations. This basic strategy is
inadequate for ad hoc queries on large datasets. The B-tree
index is effective if the user queries involve only one at-
tribute or always involve similar conditions on the same set
of attributes. However, many OLAP queries are ad hoc in
nature; they involve different subsets of attributes at differ-
ent time. There are a number of multidimensional indexing
schemes that are designed to speed up the processing of mul-
tidimensional queries [9]. However, they usually suffer from
the curse of dimensionality, i.e., as the number of dimensions
(the number of attributes in the dataset) increases, either
the size of the index grows superlinearly or the search time
grows superlinearly. In many instances, both the size and
the time grow exponentially as the number of dimensions
increases. These indexing schemes are generally considered
more efficient than sequentially scanning a relational table
when the number of dimensions are less than ten and each
query involves all the attributes. On queries involving only
a subset of the attributes or for datasets with higher dimen-
sions, using these indexing schemes takes more time than
performing sequential scan.

Since simply scanning the data values is one of the most
efficient strategies to answer complex queries, the perfor-

1More information about the STAR project is available at
http://www.star.bnl.gov/STAR.
2More information about the LHC project is available at
http://lhc.cern.ch.
3More information about EOS is available at
http://eos.nasa.gov.

mance of the these scanning operations is important for data
warehousing applications. Typically the raw data changes
infrequently in these applications, thus it is appropriate to
partition the data vertically, i.e., keeping the values of each
attribute close together. Some authors have suggested pro-
jecting out commonly queried attributes and store the values
of each attribute separately. This is called the projection in-
dex [14]. Instead of doing this for some attributes, we believe
it is better to store all attribute values this way.

Other indexing strategies that are often considered effec-
tive for processing ad hoc queries on large data warehouses
include the bitmap index [11, 13] and the UB-tree [4, 12].
In this paper, we report our experiences from implementing
various versions of the bitmap index. Some of the lessons
learned include that (i) vertical partitioning is useful, (ii) the
conventional wisdom about IO cost dominating total query
processing time is incorrect for compressed bitmaps, (iii)
compressed bitmap indexes for high cardinality attributes
are usually smaller than B-tree indexes, and (iv) more im-
portantly, these compressed bitmap indexes are quite effi-
cient.

We have also studied two strategies for storing bitmap
indexes persistently, using plain files or using an ODBMS
system. Compared to a bitmap indexing scheme imple-
mented in a commercial relational DBMS, the one based on
plain files shows similar performance when using the sim-
ple indexing method of the commercial system. Our sim-
ple bitmap index implementation based on the ODBMS is
slower, as expected. However, since the file-based program
implements vertical partitioning and utilizes better bitmap
indexing schemes, it significantly outperforms the relational
DBMS in processing range queries.

2. RELATED WORK

2.1 Bitmap indexes
Bitmap indexes were first implemented in a commercial

DBMS called Model 204 [13] although they were already
used in the 60s. This index data structure is mostly used
for On-Line Analytical Processing (OLAP) and data ware-
house applications [7], which are mainly characterized by
complex queries in read-only or append-only environments.
Bitmap indexes offer the best query processing performance
for such environments. They are not optimized for typical
transaction operations such as insert, delete or update.

A detailed discussion on designing bitmap indexes based
on different encoding schemes is presented by Chan and
Ioannidis [5, 6]. Equality encoding, which is also referred
to as the basic Bitmap Index, can be regarded as the most
fundamental method that consists of |A| bitmaps where |A|
is the cardinality of the attribute to be indexed. This type
of index is optimal for exact match queries. One-sided range
queries show the best performance characteristics with range
encoded bitmap indexes, which only consist of |A|−1 bitmaps.
The third type of encoding called interval encoding gener-
ates |A| /2 bitmaps only and is optimal for two-sided range
queries.

All bitmap encoding techniques mentioned so far are op-
timized for typical commercial applications with categori-
cal values. Bitmap indexes are used in Oracle, Sybase and
Informix as an alternative to the more conventional tree-
based data structures for handling multidimensional queries
on low cardinality attributes, say cardinality < 100. There

are many datasets that contain attributes with high cardi-
nality. For example, a typical scientific dataset usually con-
tains many attributes with cardinalities much larger than
100. On these datasets, the bitmap index is not effective
either because the index size is too large or the query pro-
cessing time is too long to be practical.

There are a number of approaches to reduce the index size
and increase the performance of the bitmap index for high
cardinality attributes. These approaches include multicom-
ponent encoding [5, 6], binning the attribute values [15, 16]
and compressing the bitmaps. This paper concentrates on
our the effects of compression.

2.2 Bitmap compression
Compression is one of the ways to make the bitmap index

useful for high cardinality attributes. By compressing the
bitmaps, less disk space is required to store the indexes and
thus they can be read faster from disk into memory. With
smaller indexes, more of them can be kept in the memory
cache and boolean operations between compressed bitmaps
might be faster as well. An efficient bitmap compression
scheme not only has to reduce the size of bitmaps but also
has to perform bitwise boolean operations efficiently.

A number of the well known compression schemes were
studied by Johnson and colleagues [1, 10]. Among them,
the scheme named the Byte-aligned Bitmap Code (BBC) [2,
3] shows the best overall performance characteristics. Re-
cently, we have derived another scheme that can greatly re-
duce the overall query processing time compared to BBC.
This scheme is named the Word-Aligned Hybrid (WAH)
scheme [18]. It is significant faster because it always op-
erates on words rather than bytes or bits and because it re-
quires very little work to encode and decode the compressed
bitmaps. We reported that WAH can be an order of magni-
tude faster than BBC in performing boolean operations [18].
In this paper, we support this claim by comparing WAH
against implementations of BBC from different sources. We
also identify how IO operations affect the relative perfor-
mance of the two compression schemes.

2.3 Why build new bitmap index software
Many commercial database systems have implemented some

versions of the bitmap index. For example, Oracle has imple-
mented a compressed bitmap index with equality encoding
[3], Sybase IQ provides the bit-sliced index [14], and IBM
DB2 UDB implements the Encoded Vector Index4 . All of
them are targeted for typical commercial data warehouses
where most of the attributes have relatively low cardinali-
ties. They are not appropriate for scientific data with mostly
high cardinality attributes.

The scientific datasets are also larger than those in a typ-
ical commercial data warehouse and most of the users are
likely to be experts that issue complex ad hoc queries. These
reasons lead us to develop our own bitmap index software
[15, 16]. One fundamental issue to be addressed in this soft-
ware is how to store the bitmaps. Since it is unlikely that
we can develop a full-featured DBMS ourselves, two obvi-
ous options are to store the bitmaps in plain files or to store
them as objects in an object-oriented DBMS (ODBMS). We
explore both of these options.

4Some information about the Encoded Vector Index is avail-
able at http://www-919.ibm.com/developer/bi/evi.html.

3. VERTICAL PARTITIONING
Most DBMS organize their data as relational tables or

objects, where the values of each record are grouped next
to each other. Imagine the entries of the table are laid out
on a plane; this organization puts rows of the table together
and places a number of rows in a page. We call this hori-
zontal partitioning of the table. An obvious alternative is to
partition the table vertically and group the values of each
column (attribute) together.

Table size Time [sec]
one-attribute table 0.51
12-attribute table 5.8

Figure 1: Time used by a commercial DBMS to
perform sequential scan on tables with 2.2 million
records.

Clearly, if most of the queries are scanning only a small
number of attributes, vertical partitioning reduces the num-
ber of pages accessed. Figure 1 contains a set of timing
results on a set of sample data. As expected, scanning the
12-attribute table takes nearly 12 times as long as scanning
an one-attribute table. Clearly, if only one attribute is to
be scanned, scanning it separately is much more efficient
than scanning the whole table. The main drawback of this
strategy is that updating the table is more time-consuming.
However, since most updates to the data warehouses are
performed in bulk and usually they are only appended, this
deficiency is not significant.

To make insertion of new records more efficient, often 20%
or even 30% of the bytes in a page are left unused in a typi-
cal relational table. This also increases the number of pages
accessed during the scanning operation. If a data ware-
house only appends new data in bulk, it is also appropriate
to densely pack the pages of the files containing the data.
Densely packing the pages also makes it easier to directly
access an individual data item. This makes masked scan
operations, also known as sequential skip scans, more effi-
cient. Figure 2 shows the timing results of using masked
scan to answer multidimensional range queries of the form,
(3 ≤ A < 5)&(1 < B ≤ 10), for example.

The test dataset consists of 2.2 million records of STAR1

data. The most commonly queried 12 attributes are in-
cluded here. The dataset contains a total of 500 attributes.
The query box is the hypercube formed by the boundaries of
the query conditions [12]. Its size is measured as a ratio of
the hypercube volume and the total volume of the domain
of all attributes. For example, let the values of Energy be
integers in the range of 0 to 30 and NumParticles in the
range of 1 to 15, the query box size of “Energy > 15 GeV

and 7 <= NumParticles < 13” is 15/31 × 6/15 = 0.19. In
our tests, we limit the query box size to be less than 0.1 be-
cause it is unlikely that a user would routinely process more
than 10% of a large dataset with terabytes of data.

For many queries, say, those with query box size < 0.01,
only one attribute needs to be fully scanned and the masked
scan operations on the remaining attributes only touch a
small number of entries. This makes the total execution
time usually quite close to the time of scanning one at-
tribute. From Figure 2, we see that scanning the vertically
partitioned table often takes about 0.5 seconds. In contrast

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.5

0.6

0.7

0.8

0.9

query box size

sc
an

 t
im

e
(s

ec
)

1−dim
2−dim
5−dim

Figure 2: Average time needed to process multidi-
mensional queries using masked scan on a table with
2.2 million records.

if the same queries are answered using a B-tree index, the
average time is 2.2 seconds. The time is about the same
for two and five dimensional queries because in most cases
the DBMS is only able to utilize the B-tree index of one
attribute and has to scan the table to resolve the condition
on the remaining attributes.

4. COMPRESSION SCHEMES
In previous work [10, 18, 19], a number of good bitmap

compression schemes have been identified. Here we select
two of them, WAH and BBC, for further testing. They
are selected because WAH is usually the fastest and BBC
compresses well and is faster than most others. Our tests use
two different BBC implementations, namely, BBC-s which
is a simplified version of the 2-sided BBC, and BBC-f which
is a 2-sided version of BBC based on the implementation by
Theodore Johnson [10]. BBC-f is the version that was used
by Stockinger [17] and BBC-s was used by Wu et al. [18].

The set of bitmaps used in the tests reported in this sec-
tion consists of 20 random bitmaps with 10 different bit
densities d ranging from 10−4 to 0.5. For instance, a bit
density of 10−4 means that on average one bit out of 10,000
is set to 1. All other bits are set to 0. Since WAH, BBC-s
and BBC-f are symmetric compression algorithms, bitmaps
with bit densities above 0.5 show the same results as those
with densities of 1 − d.

Each uncompressed bitmap consists of 108 bits and is
stored as a single Unix file. The total file sizes of the un-
compressed bitmaps and compressed bitmaps using BBC
and WAH are listed in Figure 3. The corresponding sizes of
the individual bitmaps are displayed in Figure 4. Overall,
BBC-s compresses nearly as well as BBC-f and WAH uses
about 50% more space than the two versions of BBC.

4.1 Computational Complexity
In order to measure only the computational complexity of

the bitmap compression schemes, we loaded the compressed
bitmaps into main memory. The tests are executed on three
different machines (called tin, dms and dm) with various
CPU speeds and I/O subsystems, see Figure 5.

We group the set of 20 bitmaps into 10 pairs according

Compression schema Size [MB]
uncompressed 250
WAH 139
BBC-s 94
BBC-f 90

Figure 3: Total sizes of the test bitmaps (20 x 108

bits).

0.0001 0.001 0.01 0.1 0.5
10

4

10
5

10
6

10
7

bit density

si
ze

 [
b

yt
es

]

WAH
BBC−s
BBC−f
uncompressed

Figure 4: Compressed sizes (bytes) of 108 bits of
different bit densities.

to their bit densities. We then measure the time required
to perform a bitwise logical AND operation after the two
bitmaps are loaded into memory. Figure 6 shows the mea-
sured time on the machine called dm. Summary informa-
tion about the in-core performance of the three different
compression schemes is displayed in Figure 7. These tim-
ing results show that WAH is more efficient in performing
boolean operations than BBC. In some cases WAH can be
an order of magnitude faster than BBC.

4.2 Reading plain files
When answering a query, the most time consuming part is

to read the bitmaps from disk and perform bitwise boolean
operations on them. In the next set of tests, we emulate
this process by first reading two files containing two com-
pressed bitmaps and then perform a single logical operation
on the two bitmaps. Generally, the BBC files are smaller
than WAH files. If the disks are slow, the total time for
BBC is lower; and if the disks are faster, the total time for
WAH is smaller. Figure 8 shows the total time required on
two different machines called dm and tin. On dm, where
the disk is relatively fast, the total time for WAH are gener-
ally smaller than the two versions of BBC. When the disk is
slow, as on tin, the total time for WAH is often larger than
that of BBC. This is especially true for bitmaps with very
low bit densities. In these cases, BBC-f uses about half the
time required by WAH because the corresponding files for
BBC-f are about half of those for WAH.

The measurements recorded in Figure 8 are obtained with
cold files. In this case, the disk has just been unmounted and
mounted again. The OS has no information about the spe-
cific directory containing the files or any information about
the files. Had we accessed the files before, the OS would

Name Disk CPU OS
MB/s type MHz

tin 2 Pentium 3 500 Linux 2.2.12
dms 5 Pentium II 300 Solaris 5.8
dm 20 UltraSPARC 450 Solaris 5.8

Figure 5: Information about the test machines.

0.0001 0.001 0.01 0.1 0.5
10

−3

10
−2

10
−1

10
0

10
1

bit density

ti
m

e
[s

ec
]

WAH
BBC−s
BBC−f

Figure 6: Time (seconds) to perform bitwise AND
on dm. The compressed bitmaps are in memory.

have cached directory information about the files and the
IO time maybe significantly reduced. In the following dis-
cussions we refer to these files as warm files. Since database
systems also cache indexes, the total time reported in Fig-
ure 8 is weighted more heavily with IO time than in a typical
database system.

The conventional wisdom regarding index size and query
processing time is that IO time dominates the overall pro-
cessing time, thus the smaller the index size the less the
query processing time. For compressed bitmap indexes, this
observation appears to be wrong. Figure 9 shows the ratio
of IO time and the total execution time. Even on a rela-
tively slow disk, the BBC schemes spend not much more
than half of the total time in reading the files from disks.
On both machines called dms and dm where the disk speeds
are higher, less than half of the total time is spent on read-
ing the files. In selecting a compression scheme for bitmap
indexes, we clearly have to take into account both the CPU
efficiency as well as the IO efficiency.

4.3 Worst case sizes
In earlier tests [18, 19], we have observed that the boolean

operation time is nearly proportional to the sizes of the com-
pressed operands. This leads us to examine what is the
expected size of the bitmaps in a bitmap index. Given the
same attribute cardinality, the bitmap index for the one with
uniform distribution requires the largest amount of space.
Figure 10 shows these worst case sizes of attributes with
different cardinalities.

As shown in Figure 10, the index size increases as the
cardinality increases. Since there are a total of 108 records,
the maximum attribute cardinality is 108. In this extreme
case, the size of the bitmap index is 4 × 108 words. If each

average time ratio of average time average of ratios

WAH BBC-s BBC-f BBC-s
WAH

BBC-f
WAH

BBC-f
BBC-s

BBC-s
WAH

BBC-f
WAH

BBC-f
BBC-s

tin 0.36 1.36 2.44 3.8 6.8 1.8 4.2 6.1 1.3
dms 0.50 1.85 2.80 3.7 5.6 1.5 4.0 4.7 1.1
dm 0.37 1.57 1.64 4.2 4.4 1.0 4.0 3.7 0.85

Figure 7: Summary information about the in-core performance of the different compression schemes.

(a) dm

0.0001 0.001 0.01 0.1 0.5
10

−2

10
−1

10
0

10
1

bit density

ti
m

e
[s

ec
]

WAH
BBC−s
BBC−f

(b) tin

0.0001 0.001 0.01 0.1 0.5
10

−2

10
−1

10
0

10
1

bit density

ti
m

e
[s

ec
]

WAH
BBC−s
BBC−f

Figure 8: Total time (seconds) needed to read two
files and perform one bitwise AND operation.

attribute value can be stored in one word, the index size is
about four times the data size. A B-tree index for the same
attribute typically takes 3–4 times the data size, this max-
imum bitmap index size is acceptable. For a large range of
cardinality values, the compressed index size is about twice
the data size which is smaller than the corresponding B-tree
index. In practice, most attributes have non-uniform dis-
tribution and the size of their compressed bitmap indexes
would be even smaller.

5. HOW TO STORE BITMAPS
In terms of how to store the bitmaps generated for an

index, there are a number of options. This section dis-
cusses our experiences using two such options, files and an

ODBMS. This section is divided into two subsections, one
for the file based program and one for the program based on
ODBMS. The goal is to identify a reasonable strategy for
further testing of different indexing schemes.

5.1 File based bitmap index
This file based program was originally developed for a

high-energy physics application [15]. It manages its own file
accesses with locks and tracks its memory usage with a triv-
ial memory management scheme. For portability reasons, we
have selected standard Unix read and write functions for IO
operations which may be slower than lower level functions
that directly interact with disk controllers. Since a typical
DBMS implements more sophisticated memory management
scheme and uses low level IO functions, we are interested in
finding whether our file based program have reasonable per-
formance. This file based program is labeled as IBIS in the
following discussions.

In the next set of tests, we measure the time required to
process queries. We expect these time to be dominated by
the time to read bitmaps and to perform logical operations.
To verify this, we constructed a pair of special attributes
each with cardinality of 11. Among the 11 values, 10 of
them follow a distribution so that the basic bitmap indexes
consist of the same bitmaps as used in the previous tests,
i.e. the bitmaps have bit density ranging from 10−4 to 0.5.
A set of queries are constructed so that one bitwise boolean
AND operation between two bitmaps with equal densities
are required. The queries are given to two versions of IBIS
and the DBMS. For ease of comparison, we plotted the tim-
ing results using the bit density as the x-axis, see Figure 11
for the measurements on dm. As expected, the time require
to process these special queries are about the same as the
time required to read the bitmaps and perform logical oper-
ations, see Figure 8(a) and Figure 11.

Figures 12 show the sizes of the bitmap index, the cre-
ation time and the average query processing time on dm.
Because the commercial DBMS implements a BBC com-
pressed bitmap index, the size of its index is close to the
BBC-s compressed index generated by IBIS. The average
query processing time of the DBMS and IBIS with BBC-s
are also about the same. This indicates that our file based
program has reasonable performance. The index creation
time of IBIS is much better than that of the DBMS. More
work is required to fully understand its causes.

5.2 Bitmap index on top of an ODBMS
The second program named BMI stores its bitmaps in

an object-oriented database management system (ODBMS)
[17] and was also initially motivated by a high-energy ap-
plication [16]. As far as we know, this program is the first
bitmap implementation on top of an ODBMS. We selected

5The DBMS actually allocated 247 MB for the bitmaps.

(a) dm

0.0001 0.001 0.01 0.1 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bit density

IO
 r

at
io

WAH
BBC−s
BBC−f

(b) tin

0.0001 0.001 0.01 0.1 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bit density

IO
 r

at
io

WAH
BBC−s
BBC−f

Figure 9: The ratio of IO time and the total time
reported in Figure 8.

to use an ODBMS because it is easier to manage bitmaps
as objects in an ODBMS than treating them as tables or
opaque objects in a relational DBMS.

In this program, each bitmap is implemented with a gen-
eral purpose persistent scalable variable array which is stored
in segments of 8 KB. Bitmaps can be accessed via so-called
smart pointers but also via standard iterators. Due to this
design decision, it is fairly simple to plug in various com-
pression algorithms.

For the next set of tests, we have decided to used is a
set of 10 random attributes with exponential distribution
since this kind of distribution is fairly common for scientific
data [16]. Figure 13 shows the query processing time on the
machine called tin. The test data used consists of 5 million
records. In the tests, each query involves five attributes
selected from a total of 10 attributes. After the attributes
are selected, a common boundary b is chosen to form the
test query (a0 > b)&(a1 > b)&(a2 > b)&(a3 > b)&(a4 >
b). The query boundary b is used as the horizontal axes
in Figure 13 which shows the time required to process this
type of query by BMI with BBC-f and WAH, and IBIS with
WAH. In all tests, BMI with WAH performs better than
BMI with BBC-f and IBIS with WAH is the fastest overall.

10
0

10
2

10
4

10
6

10
8

0.05

0.1

0.2

0.5

1

2

4

cardinarlity of attribute

si
ze

s
(1

08 w
o

rd
s)

WAH
BBC

Figure 10: Compressed sizes of the basic bitmap
index for an attribute with uniform distribution (108

records).

0.0001 0.001 0.01 0.1 0.5
10

−2

10
−1

10
0

10
1

bit density

ti
m

e
[s

ec
]

IBIS WAH
IBIS BBC−s
DBMS

Figure 11: Time (seconds) required to perform bit-
wise logical operations through IBIS and a commer-
cial DBMS.

Figure 14 shows the average query processing time. The
data indicates that switching from BBC-f compression to
WAH compression improves the overall performance of BMI
by a factor of three. In a number of cases, BMI with WAH
is more than an order of magnitude faster than with BBC-f.

When the files are cold, BMI with WAH compression is
almost a factor of five slower than IBIS with the same com-
pression scheme. This suggests a significant overhead for us-
ing bitmaps in the ODBMS. We were expecting some over-
head for building a bitmap index on top of an ODBMS,
however we did not expect the overhead to be this signifi-
cant. A minor point to note here is that since IBIS relies on
the OS to perform IO operations, it is able to significantly
reduce the IO time when operating on warm files. Since the
ODBMS performs its own file caching, it does not benefit
from directory information cached by the OS.

6. PERFORMANCE WITH REAL DATA
This section presents some performance results on a set

of data taken from the STAR experiment1. This dataset

size(MB) create(sec) query(sec)
IBIS WAH 166 91 0.7
IBIS BBC-s 117 116 2.9
DBMS 1235 2890 3.1

Figure 12: Total sizes (MB) of the bitmap in-
dexes, the time (seconds) needed to create them,
and the average query processing time (seconds) (2
attributes, 108 records).

contains about 2.2 million records and the tests are con-
ducted on 12 commonly queried attributes. Our goal is to
demonstrate that compressed bitmap indexes can perform
well even on very high cardinality attributes. For compar-
ison, we also include time results for scanning the verti-
cally partitioned tables and the time results of using both a
bitmap index and a B-tree index of the DBMS.

Figure 15 shows the total sizes of the bitmap indexes
compared with the size of the B-tree. IBIS is tested with
both WAH and BBC-s and the DBMS is tested with both
a bitmap index and a B-tree index. The total number of
bitmaps generated for the 12 attributes is nearly 2.7 million.
The average attribute cardinality is over 222,000. Without
compression, the bitmap index size is more than 720 GB.
Both BBC and WAH are very effective in reducing the sizes
of the bitmap indexes because the majority of the bitmaps
are very sparse. It is important to note that the compressed
bitmap indexes are significantly smaller than the B-tree in-
dexes. The total size of the files containing the attribute
values is about 113 MB. Based on Figure 10, we expect that
the total size of WAH compressed indexes to be about twice
this value, 226 MB. However, the actual total size is less
than 226 MB because the attributes are not uniform ran-
dom numbers.

Figure 16 shows the average query processing time of three
compressed bitmap indexes. The partial range queries are
generated by randomly selecting a number of attributes and
constructing a query with the specified query box size [12].
Given a query box size, the shape of the query box is allowed
to vary. For simplicity, we only use conjunctive queries; that
is the conditions on each attribute are joined together using
the AND operator. Typically, as the query box size increases
and the number of attributes increases, it takes more time to
process the query. The time used by scanning the vertically
partitioned table is marked as “p scan” in this figure.

In these tests, BBC compressed indexes require about as
much time as scanning the vertically partitioned table, but
WAH compressed indexes are always faster. On the average,
IBIS with WAH compression is about four times faster than
IBIS with BBC-s compression and more than 10 times faster
than the bitmap index from the DBMS. It uses 0.01 – 0.2
seconds to answer the test queries, which are significantly
less than the 2.2 seconds used by the B-tree indexes of the
DBMS.

7. CONCLUSIONS
Motivated by the need to efficiently process ad hoc queries

on high dimensionality data, we started to implement a
number of different bitmap index strategies. In this paper,
we first verified that for ad hoc queries on read-only data,
simply scanning the vertical partitioned tables is better than

(a) cold files

2 4 6 8 10 12 14
10

−2

10
−1

10
0

10
1

10
2

query boundary

ti
m

e
[s

ec
]

BMI BBC−f
BMI WAH
IBIS WAH

(b) warm files

2 4 6 8 10 12 14
10

−2

10
−1

10
0

10
1

10
2

query boundary

ti
m

e
[s

ec
]

BMI BBC−f
BMI WAH
IBIS WAH

Figure 13: Time (seconds) required to process 5-
dimensional queries on the machine tin (5 million
records with exponential distribution).

using a variant of the B-tree index in a commercial DBMS.
Among the various options for bitmap indexes, we mainly

examine two aspects in this paper, the compression scheme
and the persistent storage method. Regarding the persis-
tent storage method, our observation is that implementing
bitmap indexes on top of an ODBMS incurs too much over-
head. Even with sophisticated caching scheme, the imple-
mentation of the bitmap indexes on files shows good per-
formance compared to a commercial DBMS when the same
options are used.

Contrary to the conventional wisdom, smaller compressed
bitmap indexes are not necessarily more efficient. Among
the various bitmap compression schemes examined, the word-
aligned hybrid (WAH) scheme does not generate the small-
est indexes, but WAH compressed indexes are always the
most efficient in answering queries because it is much more
CPU-efficient.

In the worst case the size of a WAH compressed bitmap
index is comparable to that of a B-tree index. For most
high cardinality attributes, the compressed bitmap indexes
are smaller than the corresponding B-tree indexes. This is
verified on a set of data from a scientific application where

cold files warm files
BMI BBC-f 14.0 13.5
BMI WAH 5.1 4.9
IBIS WAH 1.1 0.12

Figure 14: Average time (seconds) to processing 5-
dimensional queries on the machine tin (5 million
records with exponential distribution).

IBIS DBMS
N WAH BBC-s bitmap B-tree

2,673,646 186 117 111 408

Figure 15: Sizes (MB) of the bitmap indexes on 2.2
million of STAR data. “N” is the total number of
bitmaps in the indexes.

the cardinalities of many of the attributes are more than
222,000. Even on these very high cardinality attributes,
WAH compressed bitmap indexes can be orders of magni-
tudes faster than alternative schemes such as B-tree indexes
or scanning the vertically partitioned tables.

8. ACKNOWLEDGMENTS
The authors wish to express our sincere gratitude to Theodore

Johnson of AT&T Research for permitting us to use his BBC
implementation in our bitmap indexing program.

9. REFERENCES
[1] S. Amer-Yahia and T. Johnson. Optimizing Queries on

Compressed Bitmaps. In Proceedings of VLDB 2000, pages
329–338. Morgan Kaufmann, 2000.

[2] G. Antoshenkov. Byte-Aligned Bitmap Compression.
Technical Report, Oracle Corp., 1994. U.S. Patent number
5,363,098.

[3] G. Antoshenkov and M. Ziauddin. Query Processing and
Optimization in ORACLE RDB. The VLDB Journal,
5:229–237, 1996.

[4] R. Bayer. The Universal B-tree for Multidimensional
Indexing. In Proc. of Intl. Conf. on World-Wide
Computing and Its Applications, pages 98–112.
Springer-Verlag, 1997.

[5] C.-Y. Chan and Y. E. Ioannidis. Bitmap Index Design and
Evaluation. In Proceedings of SIGMOD 1998. ACM Press,
1998.

[6] C. Y. Chan and Y. E. Ioannidis. An Efficient Bitmap
Encoding Scheme for Selection Queries. In Proceedings of
SIGMOD 1999. ACM Press, 1999.

[7] S. Chaudhuri and U. Dayal. An Overview of Data
Warehousing and OLAP Technology. ACM SIGMOD
Record, 26(1):65–74, March 1997.

[8] D. Comer. The Ubiquitous B-Tree. Computing Surveys,
11(2):121–137, 1979.

[9] V. Gaede and O. Günther. Multidimension access methods.
ACM Computing Surveys, 30(2):170–231, 1998.

[10] T. Johnson. Performance Measurements of Compressed
Bitmap Indices. In Proceedings of VLDB’99, pages
278–289. Morgan Kaufmann, 1999.

[11] M. Jürgens and H.-J. Lenz. Tree Based Indexes vs. Bitmap
Indexes - a Performance Study. International Journal of
Cooperative Information Systems, 10(3):355–376, 2001.

[12] V. Markl and R. Bayer. Processing Relational OLAP
Queries with UB-Trees and Multidimensional Hierarchical
Clustering. In Proceedings of DMDW 2000, June 5-6, 2000.

(a) 2-dim queries

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

query box size

q
u

er
y

p
ro

ce
ss

in
g

 t
im

e
(s

ec
)

IBIS WAH
IBIS BBC−s
DBMS
p scan

(b) 5-dim queries

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−2

10
−1

10
0

10
1

query box size

q
u

er
y

p
ro

ce
ss

in
g

 t
im

e
(s

ec
)

IBIS WAH
IBIS BBC−s
DBMS
p scan

Figure 16: The average query processing time of
random range queries on the STAR data.

[13] P. O’Neil. Model 204 Architecture and Performance. In 2nd
International Workshop in High Performance Transaction
Systems, Asilomar, CA, pages 40–59, September 1987.

[14] P. O’Neil and D. Quass. Improved Query Performance
With Variant Indices. In Proceedings of SIGMOD’97,
pages 38–49. ACM Press, 1997.

[15] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, and
A. Sim. Multidimensional Indexing and Query
Coordination for Tertiary Storage Management. In
Proceedings of SSDBM’99, pages 214–225. IEEE Computer
Society Press, 1999.

[16] K. Stockinger, D. Duellmann, W. Hoschek, and
E. Schikuta. Improving the Performance of High-Energy
Physics Analysis through Bitmap Indices. In DEXA 2000.
Springer-Verlag 2000.

[17] K. Stockinger. Bitmap Indices for Speeding Up
High-Dimensional Data Analysis. In DEXA 2002.
Springer-Verlag, 2002.

[18] K. Wu, E. J. Otoo, and A. Shoshani. A Performance
Comparison of Bitmap Indexes. In Proceedings of CIKM
2001, pages 559–561. ACM Press, 2001.

[19] K. Wu, E. J. Otoo, A. Shoshani, and H. Nordberg. Notes
on Design and Implementation of Compressed Bit Vectors.
Technical Report LBNL/PUB-3161, Lawrence Berkeley
National Laboratory, Berkeley, CA, 2001.

